Efficient Arbitrarily Divisible E-Cash Applicable to Secure Massive Transactions
نویسندگان
چکیده
منابع مشابه
Scalable Divisible E-cash
Divisible E-cash has been introduced twenty years ago but no construction is both fully secure in the standard model and efficiently scalable. In this paper, we fill this gap by providing an anonymous divisible E-cash construction with constant-time withdrawal and spending protocols. Moreover, the deposit protocol is constant-time for the merchant, whatever the spent value is. It just has to co...
متن کاملPractical Divisible E-Cash
Divisible e-cash systems allow a user to withdraw a wallet containingK coins and to spend k ≤ K coins in a single operation, respectively. Independent of the new work of Canard, Pointcheval, Sanders and Traoré (Proceedings of PKC ’15) we present a practical and secure divisible e-cash system in which the bandwidth of each protocol is constant while the system fulfills the standard security requ...
متن کاملDivisible E-Cash Made Practical
Divisible E-cash systems allow users to withdraw a unique coin of value 2 from a bank, but then to spend it in several times to distinct merchants. In such a system, whereas users want anonymity of their transactions, the bank wants to prevent, or at least detect, double-spending, and trace the defrauders. While this primitive was introduced two decades ago, quite a few (really) anonymous const...
متن کاملDivisible E-Cash in the Standard Model
Off-line e-cash systems are the digital analogue of regular cash. One of the main desirable properties is anonymity: spending a coin should not reveal the identity of the spender and, at the same time, users should not be able to double-spend coins without being detected. Compact e-cash systems make it possible to store a wallet of O(2) coins using O(L+ λ) bits, where λ is the security paramete...
متن کاملPractical Anonymous Divisible E-Cash from Bounded Accumulators
We present an efficient off-line divisible e-cash scheme which is truly anonymous without a trusted third party. This is the second scheme in the literature which achieves full unlinkability and anonymity, after the seminal work proposed by Canard and Gouget. The main trick of our scheme is the use of a bounded accumulator in combination with the classical binary tree approach. The aims of this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2915053